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In this note, improved lower bounds are derived for the sup norm condition
numbers of the B-spline bases. Numerical calculations done earlier by de Boor
indicate that the improved lower bounds are also upper bounds.

1. INTRODUCTION

In [1] and [2], de Boor has shown that the L., condition number «, .
of the B-spline basis of order & is bounded:

(22 < wpy < 2695, k=2 (1.1)

The purpose of this note is to give an elementary argument showing that
Ko = (h3)/ (227 50 that (1.1) can be replaced by

28312 aep e K 2K9F, k= 2. (1.2)

k—1
k

2. B-SPLINES AND CONDITION NUMBERS

Suppose N and k are positive integers and let t = (t; , £, ,...,t5 ) be real
numbers such that

h <ty < Kty Lisw > 1, i=12.,N 2.D
Let B, = B;;, i =1, 2,.., N, be the normalized B-splines on t; i.e.,
B 1) = (tore — 11" [t; 5o0s tii]y (x — )

where [t; ,..., 1], means the divided difference with respect to y at the points
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B-SPLINE BASES 203
t;ye-er bz By (2.1), the N B-splines B, ,..., By span an N-dimensional linear
space of functions of the form

N
s(x,a) = Y, a;By(x), xeR.

i=1

The condition number «,,,, ., of the B-spline basis relative to the partition
t is defined by

Ki,t,o = SuEIH S(', a)”w/”ai‘&le f S(‘, a)Hoo . (22)

llall o=
Now the condition number of the B-spline basis of order k is defined by

Kip,oo == SUD SUP K g, (2.3)

where the supremum is taken over all partitions satisfying (2.1).

Note that if s(-, a) is any spline of unit norm on a particular partition t
then one obtains a lower bound for «, . by computing the coefficient of s
with largest absolute value. Indeed, since

Sup, G @)l = 1,
(2.2) can be written

Kt = SUP @ lofl 5( Dl - (2.4)
acl

Take now as the particular partition
tz' — '—1, ti+k — 1, l == 1,..., k. (2.5)

Thus N = k and, with no interior knots, the splines are just ordinary poly-
nomials of degree less than k& on [-—1, 1]. From the continuity and normali-
zation properties of the B-splines it is easily seen that

By(x) = 21-* (Z‘ B i)(l XN, =1,k (2.6)

i.e., the B-splines are the polynomials used in the definition of the Bernstein
polynomials. Consider now the Chebyshev polynomial T, ;(x) =
cos((k — 1) arc cos x). Recall Rodrigues’ formula for T;_, ,

dr—1
dxk—l

Teea6) = (—DF (1 — 222 o (1 — x®F9/(1 -3+ 5 - (2k — 3)).
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Differentiating the product (I — x)*=3/2(1 - x)*~-3/2, one finds

T = () B 3 0 (38 7)) Bt @)

I
(see also [3, p. 68]). Since

ERE R 2 e S

the largest coefficient is the middle one, given by

¢:w¥:;VQ;j§ﬂ' (2.8)

Furthermore || T),_; ||, = 1 and the first part of the following theorem is
proved:

THEOREM. Suppose ki, is given by (2.3) and d;, by (2.8). Then k., = dj. .
Moreover

k—1 r—-3/2 k
B =

=26 k22 (2.9)

Completion of Proof. We prove (2.9). For this, recall Wallis’ inequality

22n/(7r (n i %))1/2 < (2)1) < 22 f(mn)L 12, n> 1.

Now

22 (m (n + %))”2 < (2" - 1) _ % (2:) < 220 (2,

n

Hence for k even

1/2
) k=372 <, < Dk-3/2,
and for k odd

(=) 2o < g < (2) 2o
I

Since ((k — 2)/(k — 1/D)P/2 = (k — 1)/k for k =4 and d, = 1, d; = 3,
we obtain (2.9). |
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From computations carried out by de Boor of the numbers
Die.co = $UP SUP D1,
with

Dyt = 12}2‘1\/ 1/diStoo,(t,-ﬂ,th,l) (B; , span(B;);=,),

it appears that
Dy = Dk,t,oo

with t given by (2.5). As shown by de Boor, one has

Kie,t,co = MAX 1/dist(B; , span(B;);=;).

Thus ;4,0 << Dy¢.» , and, by the localness, x; .. = Dy ;... for the partition
(2.5). Therefore it is not surprising to find that the first few d,, given by

k2,3,4)5 6’7’8’9’10'11
2 1| 4 6. 2‘ 10
d |1 ‘ 3 1 5 ’ 13 | 21 } 465 ' 85 ‘ 183 | 3475 | 7335
k|12 l 13 14 ] 15 '
2 19 1 ‘ 141 I

agree with the numbers D, ., on p. 142 of [2].
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