A Note on the Condition Numbers of the B-Spline Bases

Tom Lyche

Institute of Mathematics, University of Oslo, Oslo (3), Norway

Communicated by Carl de Boor
Received July 8, 1976

In this note, improved lower bounds are derived for the sup norm condition numbers of the B-spline bases. Numerical calculations done earlier by de Boor indicate that the improved lower bounds are also upper bounds.

1. Introduction

In [1] and [2], de Boor has shown that the L_{∞} condition number $\kappa_{k, \infty}$ of the B-spline basis of order k is bounded:

$$
\begin{equation*}
(\pi / 2)^{k-1} / 2 \leqslant \kappa_{k, \infty} \leqslant 2 k 9^{k-1}, \quad k \geqslant 2 \tag{1.1}
\end{equation*}
$$

The purpose of this note is to give an elementary argument showing that $\boldsymbol{\kappa}_{k, \infty} \geqslant\binom{ 2 k-3}{k-2} /\left(\begin{array}{c}{[(k-2) / 2]}\end{array}\right)$, so that (1.1) can be replaced by

$$
\begin{equation*}
\frac{k-1}{k} 2^{k-3 / 2} \leqslant \kappa_{k, x} \leqslant 2 k 9^{k-1}, \quad k \geqslant 2 . \tag{1.2}
\end{equation*}
$$

2. B-Splines and Condition Numbers

Suppose N and k are positive integers and let $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{N+k}\right)$ be real numbers such that

$$
\begin{equation*}
t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{N+k}, \quad t_{i+k}>t_{i}, \quad i=1,2, \ldots, N \tag{2.1}
\end{equation*}
$$

Let $B_{i}=B_{i, k}, i=1,2, \ldots, N$, be the normalized B-splines on \mathbf{t}; i.e.,

$$
B_{i, k}(x)=\left(t_{i+k}-t_{i}\right)(-1)^{k}\left[t_{i}, \ldots, t_{i+k}\right]_{y}(x-y)_{+}^{k-1}
$$

where $\left[t_{i}, \ldots, t_{i+k}\right]_{y}$ means the divided difference with respect to y at the points
t_{i}, \ldots, t_{i+k}. By (2.1), the $N B$-splines B_{1}, \ldots, B_{N} span an N-dimensional linear space of functions of the form

$$
s(x, a)=\sum_{j=1}^{N} a_{j} B_{j}(x), \quad x \in \mathbb{R} .
$$

The condition number $\kappa_{k, t, \infty}$ of the B-spline basis relative to the partition t is defined by

$$
\begin{equation*}
\kappa_{k, \mathbf{t}, \infty}=\sup _{\|a\|_{\infty}=1}\|s(\cdot, a)\|_{\infty} / \inf _{\|a\|_{\infty}=1}\|s(\cdot, a)\|_{\infty} \tag{2.2}
\end{equation*}
$$

Now the condition number of the B-spline basis of order k is defined by

$$
\begin{equation*}
\kappa_{k, \infty}=\sup _{N \geqslant 1} \sup _{\mathbf{t}} \kappa_{k, t, \infty}, \tag{2.3}
\end{equation*}
$$

where the supremum is taken over all partitions satisfying (2.1).
Note that if $s(\cdot, a)$ is any spline of unit norm on a particular partition \mathbf{t} then one obtains a lower bound for $\kappa_{k, \infty}$ by computing the coefficient of s with largest absolute value. Indeed, since

$$
\sup _{\|a\|_{\infty}=1} \mid s(\cdot, a) \|_{\infty}=1
$$

(2.2) can be written

$$
\begin{equation*}
\kappa_{k, \mathbf{t}, \infty}=\sup _{a \in \mathbb{R}^{N}}\|a\|_{\infty} /\|s(\cdot, a)\|_{\infty} \tag{2.4}
\end{equation*}
$$

Take now as the particular partition

$$
\begin{equation*}
t_{i}=-1, \quad t_{i+k}=1, \quad i=1, \ldots, k \tag{2.5}
\end{equation*}
$$

Thus $N=k$ and, with no interior knots, the splines are just ordinary polynomials of degree less than k on $[-1,1]$. From the continuity and normalization properties of the B-splines it is easily seen that

$$
\begin{equation*}
B_{i k}(x)=2^{1-k}\binom{k-1}{i-1}(1-x)^{k-i}(1+x)^{i-1}, \quad i=1, \ldots, k \tag{2.6}
\end{equation*}
$$

i.e., the B-splines are the polynomials used in the definition of the Bernstein polynomials. Consider now the Chebyshev polynomial $T_{k-1}(x)=$ $\cos ((k-1) \operatorname{arc} \cos x)$. Recall Rodrigues' formula for T_{k-1},

$$
T_{k-1}(x)=(-1)^{k-1}\left(1-x^{2}\right)^{1 / 2} \frac{d^{k-1}}{d x^{k-1}}\left\{\left(1-x^{2}\right)^{k-3 / 2}\right\} /(1 \cdot 3 \cdot 5 \cdots(2 k-3))
$$

Differentiating the product $(1-x)^{k-3 / 2}(1+x)^{k-3 / 2}$, one finds

$$
\begin{equation*}
T_{k-1}(x)=(-1)^{k-1} B_{1, k}(x)+\sum_{i \cdots 2}^{k}(-1)^{k-i}\binom{2 k-3}{2 i-3} /\binom{k-2}{i-2} B_{i, k}(x) \tag{2.7}
\end{equation*}
$$

(see also [3, p. 68]). Since

$$
\binom{2 k-3}{2 i-3} /\binom{k-2}{i-2}=\frac{(2 k-3)(2 k-5) \cdots(2 k+1-2 i)}{1 \cdot 3 \cdot 5 \cdots(2 i-3)}
$$

the largest coefficient is the middle one, given by

$$
\begin{equation*}
d_{k}=\binom{2 k-3}{k-2} /\binom{k-2}{[(k-2) / 2]} . \tag{2.8}
\end{equation*}
$$

Furthermore $\left\|T_{k-1}\right\|_{\infty}=1$ and the first part of the following theorem is proved:

Theorem. Suppose $\kappa_{k, \infty}$ is given by (2.3) and d_{k} by (2.8). Then $\kappa_{k, \infty} \geqslant d_{k}$. Moreover

$$
\begin{equation*}
\frac{k-1}{k} 2^{k-3 / 2} \leqslant d_{k} \leqslant \frac{k}{k-1} 2^{k-3 / 2}, \quad k \geqslant 2 \tag{2.9}
\end{equation*}
$$

Completion of Proof. We prove (2.9). For this, recall Wallis' inequality

$$
2^{2 n} /\left(\pi\left(n+\frac{1}{2}\right)\right)^{1 / 2} \leqslant\binom{ 2 n}{n} \leqslant 2^{2 n} /(\pi n)^{1 / 2}, \quad n \geqslant 1
$$

Now

$$
2^{2 n-1} /\left(\pi\left(n+\frac{1}{2}\right)\right)^{1 / 2} \leqslant\binom{ 2 n-1}{n}=\frac{1}{2}\binom{2 n}{n} \leqslant 2^{2 n-1} /(\pi n)^{1 / 2}
$$

Hence for k even

$$
\left(\frac{k-2}{k-\frac{1}{2}}\right)^{1 / 2} 2^{k-3 / 2} \leqslant d_{k} \leqslant 2^{k-3 / 2},
$$

and for k odd

$$
\left(\frac{k-1}{k-\frac{1}{2}}\right)^{1 / 2} 2^{k-3 / 2} \leqslant d_{k} \leqslant\left(\frac{k}{k-1}\right)^{1 / 2} 2^{k-3 / 2}
$$

Since $((k-2) /(k-1 / 2))^{1 / 2} \geqslant(k-1) / k$ for $k \geqslant 4$ and $d_{2}=1, d_{3}=3$, we obtain (2.9).

From computations carried out by de Boor of the numbers

$$
D_{k, \infty}=\sup _{N \geqslant 1} \sup _{\mathbf{t}} D_{k, \mathbf{1}, \infty}
$$

with

$$
D_{k, t, \infty}=\max _{1 \leqslant i \leqslant N} 1 / \operatorname{dist}_{\infty,\left(t_{i+1}, t_{i+k-1}\right)}\left(B_{i}, \operatorname{span}\left(B_{j}\right)_{j \neq i}\right),
$$

it appears that

$$
D_{k, \infty}=D_{k, t, \infty}
$$

with \mathbf{t} given by (2.5). As shown by de Boor, one has

$$
\kappa_{k, t, \infty}=\max _{i} 1 / \operatorname{dist}_{\infty}\left(B_{i}, \operatorname{span}\left(B_{j}\right)_{j \neq i}\right) .
$$

Thus $\kappa_{k, \mathbf{t}, \infty} \leqslant D_{k, \mathbf{t}, \infty}$, and, by the localness, $\kappa_{k, \mathbf{t}, \infty}=D_{k, t, \infty}$ for the partition (2.5). Therefore it is not surprising to find that the first few d_{k} given by

k	2	3	4	5	6	7	8	9	10	11
d_{k}	1	3	5	$11 \frac{2}{3}$	21	$46 \frac{1}{5}$	$85 \frac{4}{5}$	$183 \frac{6}{7}$	$347 \frac{2}{7}$	$733 \frac{10}{63}$
k	12	13	14	15						
d_{k}	$1399 \frac{2}{3}$	$2926 \frac{19}{33}$	$5628 \frac{1}{33}$	$11,688 \frac{141}{143}$						

agree with the numbers $D_{k, \infty}$ on p. 142 of [2].

References

1. C. De Boor, On calculating with B-splines, J. Approximation Theory 6 (1972), 50-62.
2. C. De Boor, On local linear functionals which vanish at all B-splines but one, in "Theory of Approximation with Applications" (A. G. Law and B. N. Sahney, Eds.), pp. 120-145, Academic Press, New York, 1976.
3. G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc., Providence, R.I., 1939.
